Extensions 1→N→G→Q→1 with N=C22 and Q=C8⋊D7

Direct product G=N×Q with N=C22 and Q=C8⋊D7
dρLabelID
C22×C8⋊D7224C2^2xC8:D7448,1190

Semidirect products G=N:Q with N=C22 and Q=C8⋊D7
extensionφ:Q→Aut NdρLabelID
C221(C8⋊D7) = C7⋊C826D4φ: C8⋊D7/C7⋊C8C2 ⊆ Aut C22224C2^2:1(C8:D7)448,264
C222(C8⋊D7) = C5632D4φ: C8⋊D7/C56C2 ⊆ Aut C22224C2^2:2(C8:D7)448,645
C223(C8⋊D7) = D14⋊M4(2)φ: C8⋊D7/C4×D7C2 ⊆ Aut C22112C2^2:3(C8:D7)448,260

Non-split extensions G=N.Q with N=C22 and Q=C8⋊D7
extensionφ:Q→Aut NdρLabelID
C22.1(C8⋊D7) = Dic14.C8φ: C8⋊D7/C7⋊C8C2 ⊆ Aut C222244C2^2.1(C8:D7)448,72
C22.2(C8⋊D7) = D28.C8φ: C8⋊D7/C56C2 ⊆ Aut C222242C2^2.2(C8:D7)448,65
C22.3(C8⋊D7) = (C22×D7)⋊C8φ: C8⋊D7/C4×D7C2 ⊆ Aut C22112C2^2.3(C8:D7)448,25
C22.4(C8⋊D7) = (C2×Dic7)⋊C8φ: C8⋊D7/C4×D7C2 ⊆ Aut C22224C2^2.4(C8:D7)448,26
C22.5(C8⋊D7) = C56.9Q8φ: C8⋊D7/C4×D7C2 ⊆ Aut C221124C2^2.5(C8:D7)448,68
C22.6(C8⋊D7) = C112⋊C4φ: C8⋊D7/C4×D7C2 ⊆ Aut C221124C2^2.6(C8:D7)448,69
C22.7(C8⋊D7) = Dic7.M4(2)φ: C8⋊D7/C4×D7C2 ⊆ Aut C22224C2^2.7(C8:D7)448,253
C22.8(C8⋊D7) = (C2×C56)⋊5C4central extension (φ=1)448C2^2.8(C8:D7)448,107
C22.9(C8⋊D7) = C2×Dic7⋊C8central extension (φ=1)448C2^2.9(C8:D7)448,633
C22.10(C8⋊D7) = C2×C56⋊C4central extension (φ=1)448C2^2.10(C8:D7)448,634
C22.11(C8⋊D7) = C2×D14⋊C8central extension (φ=1)224C2^2.11(C8:D7)448,642

׿
×
𝔽